A Fresh Look at Trust and Reputation Systems

> Christopher J. Hazard cjhazard@ncsu.edu

North Carolina State University

February 13, 2009

Trust & Reputation

What is Trust?

- presumption of fulfilled action
- assured reliance of character, ability, strength, or truth (Merriam-Webster)
- What is Reputation?
 - Belief that something is a certain way

February 13, 2009

On Computational Trust...

 "Never trust a computer you can't throw out a window." - Steve Wozniak

February 13, 2009

Trust Within Autonomous Agents

- Many applications
 - automated procurement, web services, recommender systems, personal assistant agents
- Trust research spans disciplines
 - Will you buy food from company X?
 - Are you telling the truth?
- Even within Computer Science
 - No common definition
 - No common metrics to compare one system to another
 - No common criteria or desiderata

February 13, 2009

Contribution:

- A set of common dimensions to categorize trust systems
- A set of common desiderata for building trust systems
- A set of common metrics to compare trust systems
- Results comparing 5 widely cited models, and one new model...

February 13, 2009

Outline

Trust System Classification Desiderata for Trust Systems Trust System Metrics Performance Comparison Conclusion

February 13, 2009

Trust Meta-Survey

- Ramchurn Huynh Jennings '04 (RHJ)
- ► Artz Gil '07 (AG)
- ► Sabater Sierra '05 (SS)
- ► Jøsang Ismail Boyd '07 (JIB)
- ► Dellarocas '06 (D)
- Mui Halberstadt Mohtashemi '02 (MHM)
- Commonalities between surveys

February 13, 2009

Common Dimensions Overview

- Incentive Compatibility (RHJ, D)
- Access v Action (RHJ, AG, JIB)
- ► Focus on Adverse Selection (SS, JIB, D, RHJ)
- ► Focus on Moral Hazard (SS, JIB, D, RHJ)
- Context Dependency (SS, JIB, MHM AG)
- Aggregation Breadth (RHJ, JIB, MHM, AG, D)

Dimension: Incentive Compatibility

- Incentive compatibility: honesty is rational
- If reputation is primary mechanism, then usually no.
 - ► e.g. eBay
- If incentive compatible mechanism, then yes.
 - e.g. Fly on a commercial arline buy ticket first

February 13, 2009

Dimension: Access v Action

Access Trust

- Identity & Permissions
- Security & encryption domain
- Enables action trust
- e.g. Account for online banking, Kerberos

Action Trust

- Provision, delegation, reciprocation, good-faith, etc.
- ► e.g. eBay, Epinions
- Focus of remainder of classification

February 13, 2009

Dimension: Focus on Adverse Selection

- Intrinsic quality: fixed ability/attribute
- Reliability, collaborative filtering
- Cause: information asymmetry, cure: signalling
- Often with infrequent interaction
- Can measure with statistics, but caveats
- ► e.g. Epinions, Jøsang '98

February 13, 2009

Dimension: Focus on Moral Hazard

- Moral Hazard: whether to uphold standards or promises
- ► Cause: rationalism, cure: sanctioning
- ► Often with frequent interaction
- Cannot measure by standardly applying statistics
- e.g. Contrite tit-for-tat (Sudgen '86, Boyd '89)
- Few systems focus only on moral hazard

February 13, 2009

Notes on Adverse Selection and Moral Hazard

- Completely independent dimensions
- Found together in most real-world environments
- Dual meanings of subjective
 - Qualified, affective
 - Relative to self (moral hazard)
- Objective is either
 - Mesurable
 - Global metric (adverse selection)

February 13, 2009

Dimension: Context Dependency

- Number of different dimensions of
 - reliability measures used
- Examples:
 - Subjective (affective): 0
 - Probability of positive interaction (Jøsang '98): 1
 - Discount factor & reliability (Smith & desJardins '09): 2
 - Video game review (graphics, sound, gameplay, etc.): 4
 - Review of a manufacturer's product lineup: N

February 13, 2009

Dimension: Aggregation Breadth

- Individual accumulation (decentralized)
 v global reputation (centralized)
- ▶ Prejudice, priors, & credentials
- e.g. eBay v Netflix v Lone observations (Sen '02)

Aggregation Mechanism

- Closely coupled with Aggregation Breadth
- Supported by JIB
- Popular methods
 - Summation (eBay)
 - ► Bayesian (Jøsang '99, Hazard '08)
 - Discrete values (Cognitive approaches)
 - Belief models (Yu & Singh '02)
 - ► Fuzzy models (Sabater & Sierra '01)
 - Flow models (Pagerank, Eigentrust)

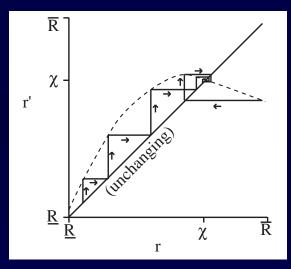
February 13, 2009

Trust System Desiderata Overview

- Evidential (adverse selection, moral hazard)
- Aggregable (adverse selection, aggregation breadth)
- Viable/tractable
- Robust (moral hazard)
- Flexible (combine info from contexts)
- Privacy enhancing (collection minimization)

February 13, 2009

Trust System Metrics: Notation


- Agent type: $\theta \in \Theta$
- Current reputation (projection): $r \in [\underline{R}, \overline{R}]$
- Next reputation function: Ω

• $r' = \Omega_{\theta}(r)$

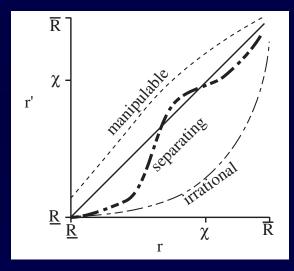
- Fixed point reputation function: χ
 - $\chi(\theta) = \text{SELECT}\{r \in [\underline{R}, \overline{R}] : r = \Omega_{\theta}(r)\}$
 - SELECT is max, min, second highest, etc. depending on Trust System
 - ► How to select SELECT? ...

February 13, 2009

Dynamic Reputation Graphs

February 13, 2009

Ideal & Good Trust Systems


February 13, 2009

Trust System Metric 1: Unambiguity

- Each type should asymptotically map to a single reputation value
- $\blacktriangleright \ \forall \theta \in \Theta : |\{r \in [\underline{R}, \overline{R}] : r = \Omega_{\theta}(r)\}| = 1$
- If not, then reputation a combination of prejudice & meaningless

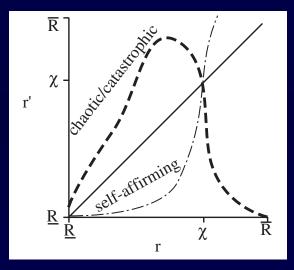
February 13, 2009

Ambiguous Trust Systems

February 13, 2009

Trust System Metric 2: Monotonicity

 Ideally Patient Strategic (IPS) agent Infinite horizon, maximize utility ▶ IPS agent b, other agent a $\blacktriangleright E(U_b(\theta_a)) =$ $\lim_{\tau \to \infty} \max_{\sigma_b} \frac{1}{\tau} \sum_{t=0}^{\tau} u(t, \sigma_{b,t}, \theta_a)$ ▶ If θ_a is weakly preferable to θ_b to IPS agent c, that is, $E(U_c(\theta_a)) \geq E(U_c(\theta_b))$, then a's asymptotic reputation should not be lower than b's reputation.

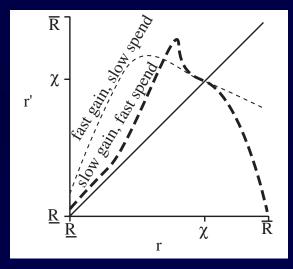

February 13, 2009

Trust System Metric 3: Convergence

- Reputation should converge quickly near the fixed point
- $\left|\frac{d\Omega}{dr}\right| < 1$ and minimized
- $\frac{d\Omega}{dr} < 0$: oscillate
- Lyupanov stability may be acceptable

February 13, 2009

Non-converging Trust Systems


February 13, 2009

Trust System Metric 4: Accuracy

- Error: $\epsilon \in [0, 1]$
- Distance from ideal: $\epsilon_{\theta}(r) = \frac{|\chi(\theta) \Omega_{\theta}(r)|}{\overline{R} R}$
- Average Reputation Measurement Error (ARME): $E(\epsilon_{\theta}) = \int_{R}^{\overline{R}} \epsilon_{\theta}(r) dr$
- ARME minimized to distribution of types
 - ▶ PDF of θ , $f(\theta)$
 - minimize $E(\epsilon) = \int_{\Theta} f(\theta) \cdot E(\epsilon_{\theta}) d\theta$

February 13, 2009

Differing Accuracy

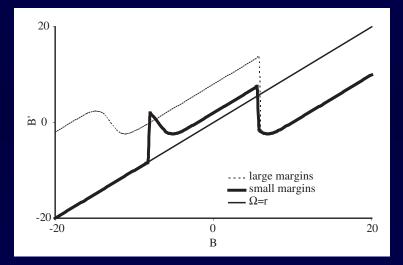
February 13, 2009

Performance Comparison

- Chose systems that
 - Measured reputation, not just aggregator
 - Diversity of models
 - Straightforward implementation
 - Connect reputation with decisions/utility
- ► Scenario
 - Take turns deciding to offer favors, one turn for each agent each round
 - Can spend own utility (\$1-\$12) to improve other's utility (\$10-\$30)
 - ► Agents discount the future (0.0 0.6)
 - Rational agents (moral hazard)

February 13, 2009

Utility & Decisions

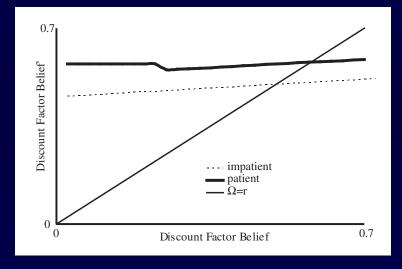

- Probabalistic Reciprocity, Discount
 Factor: specify utility directly
- Others: utility based on reputation, per Zacharia & Maes '00
 - Linear relationship: risk neutral
 - sublinear relationship: risk averse
 - superlinear relationship: risk seeking

February 13, 2009

Probabalistic Reciprocity

- ► Sen '02
- Agent keeps ballance of favors
- ► Higher favor debt, lower cost of favor → higher probability of offering favor
- Sigmoid function

Probabalistic Reciprocity Graph

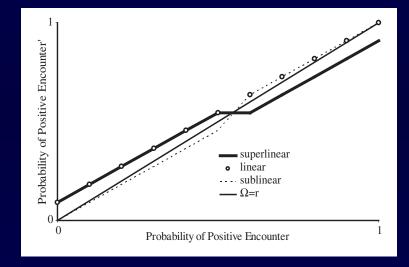

February 13, 2009

Discount Factor

- ► Hazard '08, Smith & desJardins '09
- Trustworthiness \sim patience
- Model interaction from other agent's perspective based on future utility
- Assess constraints on discount factor (e.g. < 0.5)
- Use expected value of discount factor in modeling utility

February 13, 2009

Discount Factor Graph

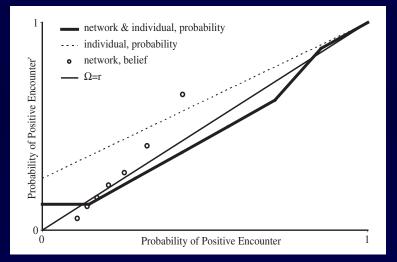

February 13, 2009

Beta Model

- ► Jøsang '98
- Quantize interactions into positive and negative
- Assume underlying probability agent will offer positive v negative result
- Model via Beta distribution

February 13, 2009

Beta Model Graph

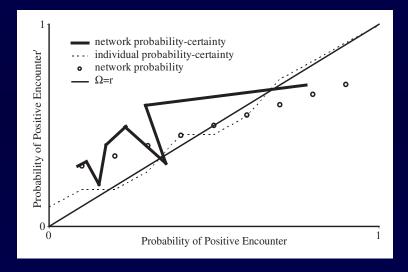

February 13, 2009

Certainty Model

- ► Wang & Singh '06, '07
- Quantize to positive & negative like Beta model
- Use Dempster-Shafer model of evidence-based belief: probability & uncertainty
- Also tested against group of 3 agents, aggregating evidence

February 13, 2009

Certainty Model Graph

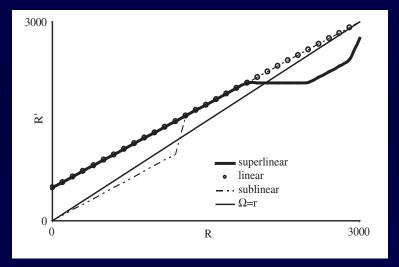

February 13, 2009

TRAVOS Model

- ► Teacy, Patel, Jennings, Luck '06
- Quantize to positive & negative like Beta model
- Subdivide reputation space into 5 regions (Beta distribution), find region with largest area under PDF, largest area is certainty
- To communicate reputation, normalize magnitude preserving mean and standard deviation

February 13, 2009

TRAVOS Model Graph


February 13, 2009

Sporas Model

- Zacharia & Maes '00
- Reputation measured on range
- Ratings dampened with new measurements

February 13, 2009

Sporas Model Graph

February 13, 2009

Results

Trust System	Unambig.	Monotonic	Converge	Accuracy
Prob. Reciprocity	no	yes	no	0.2
Discount Factor	yes	yes	< 0.1	0.02
Beta	no	no	no+	.3
Certainty	weakly*	yes	0.9	0.37
TRAVOS	no	yes	0.9	0.32
Sporas	no	no	no	0.31

*weakly unambigous means ambiguous points difficult to reach

+converged on superlinear case

February 13, 2009

Conclusions

- Trust system metrics useful for comparison within a domain
- Discount Factor shows considerable promise, but does not yet support non-discrete choices
- Desiderata and metrics presented are not the final word
 - Are IPS agents the best comparison for monotonicity?
 - Absolute mean deviation best error measure?
 - Evaluating multi-context models

February 13, 2009

On Computational Trust... (2)

 "Never trust anything that can think for itself if you can't see where it keeps its brain." - J.K. Rowling, *Harry Potter and* the Chamber of Secrets

February 13, 2009